34 3. Application to Navier-Stokes Equations

3.3 Decomposition of the Non-linear Term.
Associated Equations

This section details the various existing decompositions of the non-linear term
and the associated equations. '

3.3.1 Leonard’s Decomposition

Expression in Physical Space. Leonard [186] expresses the non-linear
ferm in the form of a triple summation:

w; = (W + u) (@ + o)) (3:19)
= Tty + W, + Tyul + ) (3.14)

The non-linear term is now written entirely as a function of the filtered
quantity @ and the fiuctuation w'. We then have two versions of this [347].

The first considers that all the terms appearing in the evolution equations
of a filtered quantity must themselves be filtered quantities, because the sim-
ulation solution has to be the same for all the terms. The filtered momentum
equation is then expressed:
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in which the subgrid tensor 7, grouping together all the terms that are not
exclusively dependent on the large scales, is defined as:

Tij = Ci_,' + R,;j =Uuy — Uty (3.16)

where the cross-stress tensor, C', which represents the interactions between
large and small scales, and the Reynolds subgrid tensor, R, which reflects the
interactions between subgrid scales, are expressed:

Cij = T, + (3.17)
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Ry = ulul, . (3.18)
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In the following, this decomposition will be called double decomposition.

The other point of view consists of considering that it must be possible
to evaluate the terms directly from the filtered variables. But the WG, term
cannot be calculated directly because it requires a second application of the
filter. To remedy this, Leonard proposes a further decomposition:
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Tty = (Wl — Tlly) + Wil

= Lq:j + U . (319)

The new L term, called Leonard tensor, represents interactions among the

large scales. Using this new decomposition, the filtered momentum equation
becomes: '
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The subgrid tensor #, which now groups all the terms that are not ex-
pressed directly from @, takes the form:

Tig = L.,'j + C.ij + R,;j = Uli; — UiU; - (3.2])

This decomposition will be designated hereafter the Leonard or triple
decomposition. Equation (3.20) and the subgrid term 7;; defined by (3.21)
can be obtained directly from the Navier-Stokes equations without using the
Leonard decomposition for this. It should be noted that the term ;i is
a quadratic term and that it contains frequencies that are in theory higher
than each of the terms composing. So in order to represent it completely,
more degrees of freedom are needed than for each of the terms u; and Ej"‘.

We may point out that, if the filter is a Reynolds operator, then the
tensors Cy; and L;; are identically zero® and the two decompositions are
then equivalent, since the subgrid tensor is reduced to the tensor R;;.

4 In practice, if the large-eddy simulation filter is associated with a given compu-
tational grid on which the Navier-Stokes equations are resolved, this means that
the grid used for composing the %;T; product has to be twice as fine (in each
direction of space) as the one used to represent the velocity field. If the product
is composed on the same grid, then only the T;T; term can be calculated.

5 It is recalled that if the filter is a Reynolds operator, then we have the three
following properties (see Appendix A):
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Writing the Navier-Stokes equations {3.1) in the symbolic form

du

5 = NS (3.22)
the filtered Navier—Stokes equations are expressed
du ou
—=——= S .
G * il G x NS(u) (3.23)
= NS8(@) + [G*NS]u) (3.24)

where [.,.] is the commutator operator introduced in Sect. 2.1.2. We note
that the subgrid tensor corresponds to the commutation error between the
filter and the non-linear term. Introducing the bilinear form B(-,):

Bug,uy) = wu; (3.25)

we get

Tig = [Gx, Bl(ui,uz) . (3.26)

Double decomposition (3.16) leads to the following equation for the re-
solved kinetic energy ¢? = 7,7, /2:
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Leonard’s decomposition (3.21) can be used to obtain the similar form:
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This equation differs from the previous one only in the first and sixth
terms of the right-hand side, and in the definition of tensor 7

— VIII - advection .

— IX - idem IT
— X -ddem IIT
— X1 - idem IV
— XII - idemV

— XIIT - production
- XIV - idem VII

The momentum equation for the small scales is obtained by subtract-
ing the large scale equation from the unfiltered momentum equation (3.1),
making, for the double decomposition:
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This equation shows the existence of several mechanisms exchanging ki-
netic energy at the resolved scales:

— I - production

-7 -)subgrid dissipation .

— 111 - dissipation by viscous effects

— 1V - diffusion by pressure effect

— V - diffusion by viscous effects

— VI - diffusion by interaction among resolved scales
— VII - diffusion by interaction with subgrid modes.
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and, for the triple decomposition:
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The subgrid kinetic energy 92, = ujul, /2 equation obtained by multiply-
ing (3.30) by »] and filtering the relation thus derived is expressed:
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XX XXI
— XV - advection
— XV1I - turbulent transport
— XVII - diffusion by pressure effects
— XVIII - diffusion by viscous effects
— XIX - diffusion by subgrid modes
— X X - dissipation by viscous effects
— X XTI - subgrid dissipation.
For the double decomposition, equation (3.29) leads to:
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with:

— X XII - turbulent transport

— XXIII - production

— X XIV - diffusion by pressure effects

— XXV - viscous effects

~ X X VI - subgrid dissipation and diffusion

1t is recalled that, if the filter used is not positive, the generalized subgrid
kinetic energy qﬁsgs defined as the half-trace of the subgrid tensor,
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can admit negative values locally (see Sect. 3.3.5). If the filter is a Reynolds
operator, the subgrid tensor is then reduced to the subgrid Reynolds tensor
and the generalized subgrid kinetic energy is equal to the subgrid kinetic

energy, i.e.
1—
Qe = éuzu = Qlegs = Thk/2 (3.33)

Expression in Spectral Space. Both versions of the Leonard decompo-
sition .can be transcribed in the spectral space. Using the definition of the
fluctuation u'(k) as

(k) = (1- Gk (3:34)
the filtered non-linear term é(k)Ti (k) is expressed, for the triple decompo-
sition:
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The first term of the right-hand side corresponds to the contribution @;%; ,

the second to the Leonard tensor L, the third to the cross stresses represented
by the tensor €, and the fourth to the subgrid Reynolds tensor R. This is

[Allustrated by Fig. 3.1.

.The double decomposition is derived by combination of the first two terms
of the right-hand side of (3.35):
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